nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.61 53-60
畜禽皮下脂肪沉积的分子调控机制研究进展
基金项目(Foundation): 广西自然科学基金项目(2022GXNSFAA035525); 国家自然科学基金项目(31760672)
邮箱(Email): huangyn@gxu.edu.cn;
DOI: 10.19556/j.0258-7033.20240206-03
摘要:

皮下脂肪是能量代谢和内分泌系统的重要组成部分,对畜禽的生长和肉质起着重要作用。皮下脂肪组织在动物体内具有隔热、能量储存和脂肪因子分泌等多种功能。皮下脂肪厚度以及肌内脂肪含量与肉类产量和质量密切相关,脂肪沉积会浪费大量能量,并且影响胴体的瘦肉百分比,因此降低皮下脂肪含量对畜禽生产非常重要。本文就影响皮下脂肪沉积的关键转录因子、非编码RNA、关键代谢酶及其调控机制进行综述,为了解动物皮下脂肪沉积的机制,改进肉类产品的产量和质量,更有效地控制动物的脂肪含量和脂肪分布提供了参考依据。

Abstract:

Subcutaneous fat is an important component of the energy metabolism and endocrine system, and plays an important role in the growth and meat quality of livestock and poultry. Subcutaneous adipose tissue has a variety of functions,including thermal insulation, energy storage and secretion of adipokines. Subcutaneous fat thickness and intramuscular fat content is closely related to meat yield and quality. Reducing subcutaneous fat content is very important for livestock and poultry production because fat deposition wastes a lot of energy and subcutaneous fat affects the percentage of lean in the carcass. In this paper, key transcription factors, non-coding RNAs, key metabolic enzymes and their regulatory mechanisms affecting subcutaneous fat deposition are reviewed to provide a reference basis for understanding the mechanism of subcutaneous fat deposition in animals, improving the yield and quality of meat products, and controlling the fat content and fat distribution of animals more effectively.

参考文献

[1]Barak Y,Nelson M C,Ong E S,et al.PPAR gamma is required for placental,cardiac,and adipose tissue development[J].Mol Cell,1999,4(4):585-595.

[2]孙子惠,李德法,关湘妍,等.梅花鹿不同组织PPARγ、HSL、FAS基因差异表达研究[J].黑龙江动物繁殖,2023,31(5):1-7.

[3]Wang N-D,Finegold M J,Bradley A,et al.Impaired energy homeostasis in C/EBPα knockout mice[J].Science,1995,269(5227):1108-1112.

[4]Wu Z,Rosen E D,Brun R,et al.Cross-regulation of C/EBPalpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity[J].Mol Cell,1999,3(2):151-158.

[5]Hu E,Tontonoz P,Spiegelman B M.Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha[J].Proc Natl Acad Sci U S A,1995,92(21):9856-9860.

[6]Wu Z,Bucher N L,Farmer S R.Induction of peroxisome proliferator-activated receptor gamma during the conversion of3T3 fibroblasts into adipocytes is mediated by C/EBPbeta,C/EBPdelta,and glucocorticoids[J].Mol Cell Biol,1996,16(8):4128-4136.

[7]He C,Wang Y,Xu Q,et al.Overexpression of Krueppel like factor 3 promotes subcutaneous adipocytes differentiation in goat Capra hircus[J].Anim Sci J,2021,92(1):e13514.

[8]Li X,Zhang H,Wang Y,et al.RNA-seq analysis reveals the positive role of KLF5 in the differentiation of subcutaneous adipocyte in goats[J].Gene,2022,808:145969.

[9]Jiang S,Wei H,Song T,et al.KLF13 promotes porcine adipocyte differentiation through PPARγ activation[J].Cell Biosci,2015,5:28.

[10]高琴,张皓,王英军,等.过表达鸡Klf2促进klf7转录抑制脂肪细胞分化[J].生物工程学报,2023,39(4):1670-1683.

[11]Li Y,Xu Q,Wang Y,et al.Knockdown of KLF7 inhibits the differentiation of both intramuscular and subcutaneous preadipocytes in goat[J].Anim Biotechnol,2023,34(4):1072-1082.

[12]Xu Q,Lin Y,Wang Y,et al.Knockdown of KLF9 promotes the differentiation of both intramuscular and subcutaneous preadipocytes in goat[J].Biosci Biotechnol Biochem,2020,84(8):1594-1602.

[13]杜宇,王永,孟庆勇,等.干扰山羊KLF12促进皮下脂肪细胞分化[J].中国农业科学,2022,55(1):184-196.

[14]Liu X,Liu K,Shan B,et al.A genome-wide landscape of m RNAs,lnc RNAs,and circ RNAs during subcutaneous adipogenesis in pigs[J].J Anim Sci Biotechnol,2018,9:76.

[15]高小童.新linc RNA-ROFM调控猪皮下脂肪代谢的分子机制研究[D].南宁:广西大学,2021.

[16]郭勇.脂肪沉积相关lnc RNAs筛选及其对猪背膘厚影响研究[D].贵阳:贵州大学,2021.

[17]晁哲,王林杰,吴望军,等.五指山猪皮下脂肪组织lnc RNA和m RNA的鉴定与分析[J].畜牧与兽医,2020,52(4):7-14.

[18]Zhang D,Wu W,Huang X,et al.Comparative analysis of gene expression profiles in differentiated subcutaneous adipocytes between Jiaxing Black and Large White pigs[J].BMC Genomics,2021,22(1):61.

[19]Wang J,Hua L,Chen J,et al.Identification and characterization of long non-coding RNAs in subcutaneous adipose tissue from castrated and intact full-sib pair Huainan male pigs[J].BMCGenomics,2017,18(1):542.

[20]Gong Y,He J,Li B,et al.Integrated analysis of lnc RNA and m RNA in subcutaneous adipose tissue of Ningxiang pig[J].Biology,2021,10(8):726.

[21]Li Q,Wang L,Xing K,et al.Identification of circ RNAs associated with adipogenesis based on RNA-seq data in pigs[J].Genes,2022,13(11):2062.

[22]Feng H,Yousuf S,Liu T,et al.The comprehensive detection of mi RNA and circ RNA in the regulation of intramuscular and subcutaneous adipose tissue of Laiwu pig[J].Sci Rep,2022,12(1):16542.

[23]Zhang Y,Guo X,Pei J,et al.Circ RNA expression profile during yak adipocyte differentiation and screen potential circRNAs for adipocyte differentiation[J].Genes,2020,11(4):414.

[24]Liu T Y,Feng H,Yousuf S,et al.Functional analysis of differentially expressed circular RNAs in sheep subcutaneous fat[J].BMC Genomics,2023,24(1):591.

[25]Peng Y,Chen F-F,Ge J,et al.mi R-429 Inhibits differentiation and promotes proliferation in porcine preadipocytes[J].Int JMol Sci,2016,17(12):2047.

[26]Wu W,Liu K,You Z,et al.Mi R-196b-3p and mi R-450b-3p are key regulators of adipogenesis in porcine intramuscular and subcutaneous adipocytes[J].BMC Genomics,2023,24(1):360.

[27]陶璇,顾以韧,杨雪梅,等.mi R-27a、mi R-27b和mi R-378在不同猪种皮下脂肪中的差异表达研究[J].中国畜牧杂志,2018,54(11):45-48.

[28]王书芳,潘洋洋,任端阳,等.mi R-200c和mi R-429靶向调节绵羊皮下脂肪细胞中SCD1表达的研究[J].畜牧兽医学报,2019,50(7):1347-1357.

[29]Shan B,Yan M,Yang K,et al.Mi R-218-5p affects subcutaneous adipogenesis by targeting ACSL1,a novel candidate for pig fat deposition[J].Genes,2022,13(2):260.

[30]Xu K,Ji M,Huang X,et al.Differential regulatory roles of micro RNAs in porcine intramuscular and subcutaneous adipocytes[J].J Agric Food Chem,2020,68(13):3954-3962.

[31]Zhao C,Wu H,Qimuge N,et al.MAT2A promotes porcine adipogenesis by mediating H3K27me3 at Wnt10b locus and repressing Wnt/β-catenin signaling[J].BBA Mol Cell Bioll,2018,1863(2):132-142.

[32]Cai R,Chao M,Zhao T,et al.mi R-503 targets Maf K to inhibit subcutaneous preadipocyte adipogenesis causing a decrease of backfat thickness in Guanzhong Black pigs[J].Meat Sci,2023,198:109116.

[33]Long F,Wang X,Wan Y,et al.Bta-mi R-493 Inhibits bovine preadipocytes differentiation by targeting BMPR1A via the TGFβ/BMP and p38MAPK signaling pathways[J].J Agric Food Chem,2022,70(46):14641-14653.

[34]Sadri H,Ghaffari M H,Trakooljul N,et al.Micro RNA profiling of subcutaneous adipose tissue in periparturient dairy cows at high or moderate body condition[J].Sci Rep,2022,12(1):14748.

[35]Du L,Chang T,An B,et al.Transcriptomics and lipid metabolomics analysis of subcutaneous,visceral,and abdominal adipose tissues of beef cattle[J].Genes,2022,14(1):37.

[36]Liu T,Feng H,Yousuf S,et al.Differential regulation of m RNAs and lnc RNAs related to lipid metabolism in Duolang and Small Tail Han sheep[J].Sci Rep,2022,12(1):11157.

[37]Ntambi J M,Miyazaki M,Stoehr J P,et al.Loss of stearoylCo A desaturase-1 function protects mice against adiposity[J].Proc Natl Acad Sci U S A,2002,99(17):11482-11486.

[38]Renaville B,Bacciu N,Lanzoni M,et al.Association of single nucleotide polymorphisms in fat metabolism candidate genes with fatty acid profiles of muscle and subcutaneous fat in heavy pigs[J].Meat Sci,2018,139:220-227.

[39]Zappaterra M,Luise D,Zambonelli P,et al.Association study between backfat fatty acid composition and SNPs in candidate genes highlights the effect of FASN polymorphism in large white pigs[J].Meat Sci,2019,156:75-84.

[40]Grzes M,Sadkowski S,Rzewuska K,et al.Pig fatness in relation to FASN and INSIG2 genes polymorphism and their transcript level[J].Mol Biol Rep,2016,43(5):381-389.

[41]Long K R,Ma J D,Chen L,et al.Promoter and first exon methylation regulate porcine FASN gene expression[J].Genet Mol Res,2015,14(3):8443-8450.

[42]张雄,史开志,张勇,等.猪FASN基因表达与胴体及肉质性状相关性研究[J].黑龙江畜牧兽医,2021(9):64-67.

[43]Du L,Li K,Chang T,et al.Integrating genomics and transcriptomics to identify candidate genes for subcutaneous fat deposition in beef cattle[J].Genomics,2022,114(4):110406.

[44]Yang X,Zhang X,Yang Z,et al.Transcriptional regulation associated with subcutaneous adipogenesis in porcine ACSL1gene[J].Biomolecules,2023,13(7):1057.

[45]Mead J R,Irvine S A,Ramji D P.Lipoprotein lipase:structure,function,regulation,and role in disease[J].J Mol Med (Berl),2002,80(12):753-769.

[46]王芳,张跃博,蒋谦,等.宁乡猪皮下脂肪与肌内脂肪组织转录组差异分析[J].遗传,2023,45(12):1147-1157.

[47]Xiong L,Pei J,Wu X,et al.Explaining unsaturated fatty acids(UFAs),especially polyunsaturated fatty acid (PUFA) content in subcutaneous fat of yaks of different sex by differential proteome analysis[J].Genes,2022,13(5):790.

[48]Althaher A R.An Overview of hormone-sensitive lipase (HSL)[J].Thescientificworldjo,2022,2022:1964684.

[49]Zimmermann R,Strauss J G,Haemmerle G,et al.Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase[J].Science,2004,306(5700):1383-1386.

[50]敖叶,苑洪霞,韦仕南,等.HSL与FAS基因在苏太猪不同组织器官中的表达研究[J].黑龙江畜牧兽医,2018,(23):84-86.

[51]刘燕,李赞,田万年.牛HSL基因的克隆和生物信息学分析[J].畜牧与饲料科学,2019,40(6):9-12.

[52]杨红文,粟朝芝,王德凤.猪脂肪甘油酸脂酶(ATGL)基因的表达特性分析[J].黑龙江畜牧兽医,2012(13):52-54.

基本信息:

DOI:10.19556/j.0258-7033.20240206-03

中图分类号:S852.2

引用信息:

[1]李银,韦洋洋,蒙园等.畜禽皮下脂肪沉积的分子调控机制研究进展[J].中国畜牧杂志,2025,61(01):53-60.DOI:10.19556/j.0258-7033.20240206-03.

基金信息:

广西自然科学基金项目(2022GXNSFAA035525); 国家自然科学基金项目(31760672)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文