nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 08, v.60 27-33
组学技术在猪肉品质评价中的应用研究进展
基金项目(Foundation): 广东省2022年省级乡村振兴战略专项资金种业振兴项目(2021-440000-24010202-8887、2022-440000-4301030202-9510、2022-4408X1-43010402-0019)
邮箱(Email): husanbo@foxmail.com;
DOI: 10.19556/j.0258-7033.20230522-03
摘要:

猪肉品质是影响消费者购买欲望的重要因素。随着技术的发展,在肉类研究中开始广泛应用组学技术来提高食品的质量和安全性,保障消费者的健康和需求。本文介绍了用于猪肉品质评价方面的蛋白质组学、代谢组学以及脂质组学3种组学技术,阐述3种组学技术各自的特点及其在肉类品质评价中的实际应用,讨论了组学技术在肉质评价方面未来的方向,为组学技术在猪肉的质量控制和预测上的研究和应用提供参考。

Abstract:

Pork quality is an important factor affecting consumers' purchasing desire. With the development of technology,omics technology has been widely used in meat research to improve the quality and safety of food and protect the health and needs of consumers. This article introduces the three omics technologies of proteomics, metabolomics and lipidomics used in pork quality evaluation, explains the respective characteristics of the three omics technologies and their practical application in meat quality evaluation, and discusses It provides a reference for the research and application of omics technology in pork quality control and prediction.

参考文献

[1]刘小红,陈瑶生. 2022年生猪产业发展状况、未来发展趋势与建议[J].中国畜牧杂志, 2023, 59(3):264-268.

[2]张海峰,周自阳,周琳.北京、上海和广州消费者猪肉消费偏好比较分析[J].中国畜牧杂志, 2021, 57(S1):279-282,288.

[3] Da Costa Barbon A P A, Barbon Jr S, Campos G F C, et al.Development of a flexible computer vision system for marbling classification[J]. Comput Electron Agr, 2017, 142:536-544.

[4] Kamruzzaman M, Makino Y, Oshita S. Online monitoring of red meat color using hyperspectral imaging[J]. Meat Sci, 2016,116:110-117.

[5] Munekata P E S, Pateiro M, López-Pedrouso M, et al. Foodomics in meat quality[J]. Curr Opin Food Sci, 2021, 38:79-85.

[6] Cornforth D P, Jayasingh P. Chemical and physical characteristics of meat/Color and Pigment[M]//Dikeman M. Encyclopedia of Meat Sciences. Salt Lake City:Academy Press, 2004,249-256.

[7] Tomasevic I, Djekic I, Font-i-Furnols M, et al. Recent advances in meat color research[J]. Curr Opin Food Sci, 2021, 41:81-87.

[8] Warner R D, Wheeler T L, Ha M, et al. Meat tenderness:Advances in biology, biochemistry, molecular mechanisms and new technologies[J]. Meat Sci, 2022, 185:108657.

[9] Picard B, Gagaoua M. Proteomic investigations of beef tenderness[M]//Michelle C. Proteomics in Food Science. Salt Lake City:Academic Press, 2017:177-197.

[10] Tian X, Wang Y, Fan X, et al. Expression of pork plectin during postmortem aging[J]. J Agric Food Chem, 2019, 67(42):11718-11727.

[11] Ngapo T M, Lozano M S R, Varela D B. Mexican consumers at the point of meat purchase. Pork choice[J]. Meat Sci, 2018,135:27-35.

[12] Miller R. 3-Factors affecting the quality of raw meat[J]. Agr Food Sci, 2002:27-63.

[13] Lomiwes D, Farouk M M, Wu G, et al. The development of meat tenderness is likely to be compartmentalised by ultimate pH[J]. Meat Sci, 2014, 96(1):646-651.

[14] Bidner B S, Ellis M, Brewer M S, et al. Effect of ultimate pH on the quality characteristics of pork[J]. J Muscle Foods, 2004,15(2):139-154.

[15] Natalie J O, Olivia P G, Ronald B P. Variation in the terminology and methodologies applied to the analysis of water holding capacity in meat research[J]. Meat Sci, 2021, 178:108510.

[16] Andersen P V, Afseth N K, Gjerlaug-enger E, et al. Prediction of water holding capacity and pH in porcine longissimus lumborum using Raman spectroscopy[J]. Meat Sci, 2021, 172:108357.

[17] Xu D, Wang Y B, Jiao N, et al. The coordination of dietary valine and isoleucine on water holding capacity, pH value and protein solubility of fresh meat in finishing pigs[J]. Meat Sci,2020, 163:108074.

[18] Flores M. The eating quality of meat:III—Flavor[M]//Fidel Toldra. Lawrie's Meat Science. Sawston Cambridge:Woodhead Publishing, 2023:421-455.

[19] Margit D. Aaslyng, Lene Meinert, Meat flavour in pork and beef-From animal to meal[J]. Meat Sci, 2017, 132:112-117.

[20] Gagaoua M, Zhu Y. Proteomics advances in beef production[M]//María López Pedrouso, Jose M Lorenzo, Daniel Franco Ruiz. Food Proteomics. Salt Lake City:Academic Press, 2022:151-182.

[21] Gagaoua M, Monteils V, Couvreur S, et al. Beef tenderness prediction by a combination of statistical methods:Chemometrics and supervised learning to manage integrative farm-tomeat continuum data[J]. Foods, 2019, 8(7):274.

[22] Purslow P P, Gagaoua M, Warner R D. Insights on meat quality from combining traditional studies and proteomics[J]. Meat Sci,2021, 174:108423.

[23] Yu L R, Stewart N A, Veenstra T D. Proteomics:the deciphering of the functional genome[M]//Ginsburg G S, Willard H F. Essentials of genomic and personalized medicine. Salt Lake City:Academic Press, 2010:89-96.

[24]杨景森,王丽,蒋宗勇,等.低蛋白氨基酸平衡日粮的应用及其对猪肉品质影响的研究进展[J].中国畜牧杂志, 2022,58(10):24-30.

[25] Devine C, Jensen W K. Encyclopedia of meat sciences[M]. Salt Lake City:Academic Press, 2004:1102-1109.

[26] Zhang J, Wang T, Yang C, et al. Integrated proteomics and metabolomics analysis revealed the mechanisms underlying the effect of irradiation on the fat quality of Chinese bacon[J]. Food Chem, 2023, 413:135385.

[27] Hou X, Liu Q, Meng Q, et al. TMT-based quantitative proteomic analysis of porcine muscle associated with postmortem meat quality[J]. Food Chem, 2020, 328:127133.

[28] Schilling M W, Suman S P, Zhang X, et al. Proteomic approach to characterize biochemistry of meat quality defects[J]. Meat Sci, 2017, 132:131-138.

[29] Nair M N, Costa-Lima B R C, Schilling M W, et al. Proteomics of color in fresh muscle foods[M]//Colgrave M L. Proteomics in Food Science. Salt Lake City:Academic Press, 2017:163-175.

[30] Sayd T, Morzel M, Chambon C, et al. Proteome analysis of the sarcoplasmic fraction of pig semimembranosus muscle:implications on meat color development[J]. J Agric Food Chem,2006, 54(7):2732-2737.

[31] Zuber E A, Outhouse A C, Helm E T, et al. Contribution of early-postmortem proteome and metabolome to ultimate ph and pork quality[J]. Meat Muscle Biol, 2021, 5(1):1-17.

[32] Zuber E A. Metabolomic and proteomic features of fresh pork loin that vary in ultimate pH and pork quality[D]. Ames, ISU Ice Arena:Iowa State University, 2020.

[33] Cho J H, Lee R H, Jeon Y J, et al. Proteomic assessment of the relevant factors affecting pork meat quality associated with Longissimus dorsi muscles in Duroc pigs[J]. Asian-Australas J Anim Sci, 2016, 29(11):1653-1663.

[34] Johnson L G, Zhai C, Reever L M, et al. Characterizing the sarcoplasmic proteome of aged pork chops classified by purge loss[J]. J Anim Sci, 2023, 101:skad046.

[35] Carlson K B, Prusa K J, Fedler C A, et al. Proteomic features linked to tenderness of aged pork loins[J]. Journal of Animal Science, 2017, 95(6):2533-2546.

[36] Zequan X, Yonggang S, Guangjuan L, et al. Proteomics analysis as an approach to understand the formation of pale,soft, and exudative(PSE)pork[J]. Meat Sci, 2021, 177:108353.

[37] Xu L, He Y, Yuan X, et al. iTRAQ-based proteomic analysis reveals the underlying mechanism of postmortem tenderization of refrigerated porcine Longissimus thoracis et lumborum muscle[J]. Meat Sci, 2023, 197:109068.

[38] Wang J, Xiao J, Liu X, et al. Tandem mass tag-labeled quantitative proteomic analysis of tenderloins between Tibetan and Yorkshire pigs[J]. Meat Sci, 2021, 172:108343.

[39] Yang H, Xu X, Ma H, et al. Integrative analysis of transcriptomics and proteomics of skeletal muscles of the Chinese indigenous Shaziling pig compared with the Yorkshire breed[J].BMC Genet, 2016, 17(1):1-13.

[40] Muroya S, Ueda S, Komatsu T, et al. MEATabolomics:Muscle and meat metabolomics in domestic animals[J]. Metabolites,2020, 10(5):188.

[41] Zhang X K, Lan Y B, Huang Y, et al. Targeted metabolomics of anthocyanin derivatives during prolonged wine aging:Evolution, color contribution and aging prediction[J]. Food Chem, 2021, 339:127795.

[42] Ranganathan S, Gribskov M, Nakai K, et al, Encyclopedia of Bioinformatics and Computational Biology[M]. Salt Lake City:Academic Press, 2019:463-475.

[43] Junot C, Fenaille F, Colsch B, et al. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways[J]. Mass Spectrom Rev, 2014, 33(6):471-500.

[44] Consonni R, Cagliani L R. The potentiality of NMR-based metabolomics in food science and food authentication assessment[J]. Magn Reson Chem, 2019, 57(9):558-578.

[45] Yu Q, Cooper B, Sobreira T, et al. Utilizing pork exudate metabolomics to reveal the impact of aging on meat quality[J].Foods, 2021, 10(3):668.

[46] Li H, Geng W, Haruna S A, et al. Identification of characteristic volatiles and metabolomic pathway during pork storage using HS-SPME-GC/MS coupled with multivariate analysis[J]. Food Chem, 2022, 373:131431.

[47] Yu Q, Tian X, Shao L, et al. Targeted metabolomics to reveal muscle-specific energy metabolism between bovine longissimus lumborum and psoas major during early postmortem periods[J]. Meat sci, 2019, 156:166-173.

[48] Kodani Y, Miyakawa T, Komatsu T, et al. NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese Black cattle[J]. Sci Rep, 2017,7(1):1-13.

[49] Tamura Y, Iwatoh S, Miyaura K, et al. Metabolomic profiling reveals the relationship between taste-related metabolites and roasted aroma in aged pork[J]. LWT, 2022, 155:112928.

[50] Yu Q, Cooper B, Sobreira T, et al. Utilizing pork exudate metabolomics to reveal the impact of aging on meat quality[J].Foods, 2021, 10(3):668.

[51] Wang Q, Li X, Xue B, et al. Low-salt fermentation improves flavor and quality of sour meat:Microbiology and metabolomics[J]. LWT, 2022, 171:114157.

[52] Deng S, Liu Y, Huang F, et al. Evaluation of volatile flavor compounds in bacon made by different pig breeds during storage time[J]. Food Chem, 2021, 357:129765.

[53] Yu T, Tian X, Li D, et al. Transcriptome, proteome and metabolome analysis provide insights on fat deposition and meat quality in pig[J]. Food Res Int, 2023, 166:112550.

[54] Han D, Zhang C H, Fauconnier M L, et al. Characterization and differentiation of boiled pork from Tibetan, Sanmenxia and Duroc×(Landrac×Yorkshire)pigs by volatiles profiling and chemometrics analysis[J]. Food Res Int, 2020, 130:108910.

[55] Lu P, Li D, Yin J, et al. Flavour differences of cooked longissimus muscle from Chinese indigenous pig breeds and hybrid pig breed(Duroc×Landrace×Large White)[J]. Food Chem, 2008,107(4):1529-1537.

[56] Osch K. Pauling, Computational Lipidomics[M]//Ranganathan S, Gribskov M, Nakai K, et al. Encyclopedia of Bioinformatics and Computational Biology. Salt Lake City:Academic Press,2019:894-899.

[57] Chen H, Wei F, Dong X, et al. Lipidomics in food science[J].Curr Opin Food Sci, 2017, 16:80-87.

[58] Bourlieu C, Cheillan D, Blot M, et al. Polar lipid composition of bioactive dairy co-products buttermilk and butterserum:Emphasis on sphingolipid and ceramide isoforms[J]. Food Chem, 2018, 240:67-74.

[59] Li J, Tang C, Zhao Q, et al. Integrated lipidomics and targeted metabolomics analyses reveal changes in flavor precursors in psoas major muscle of castrated lambs[J]. Food Chem, 2020,333:127451.

[60] Tang H, Wang X, Xu L, et al. Establishment of local searching methods for orbitrap-based high throughput metabolomics analysis[J]. Talanta, 2016, 156:163-171.

[61] Liu Y, Jiao J G, Gao S, et al. Dietary oils modify lipid molecules and nutritional value of fillet in Nile tilapia:A deep lipidomics analysis[J]. Food Chem, 2019, 277:515-523.

[62] Zhang Z, Liao Q, Sun Y, et al. Lipidomic and transcriptomic analysis of the longissimus muscle of luchuan and duroc pigs[J]. Front Nutr, 2021, 8:667622.

[63] Huang Y C, Li H J, He Z F, et al. Study on the flavor contribution of phospholipids and triglycerides to pork[J]. Food Sci Biotechnol, 2010, 19:1267-1276.

[64] Hou X, Zhang R, Yang M, et al. Metabolomics and lipidomics profiles related to intramuscular fat content and flavor precursors between Laiwu and Yorkshire pigs[J]. Food Chem, 2023,404:134699.

[65] Bi J, Li Y, Yang Z, et al. Analysis of the effect of steaming times on lipid composition of pork belly based on lipidomics technology[J]. J Food Compost Anal, 2023:105143.

[66] Mi S, Shang K, Li X, et al. Characterization and discrimination of selected China's domestic pork using an LC-MS-based lipidomics approach[J]. Food Control, 2019, 100:305-314.

基本信息:

DOI:10.19556/j.0258-7033.20230522-03

中图分类号:TS251.51

引用信息:

[1]吴卓穗,李剑豪,曾检华等.组学技术在猪肉品质评价中的应用研究进展[J].中国畜牧杂志,2024,60(08):27-33.DOI:10.19556/j.0258-7033.20230522-03.

基金信息:

广东省2022年省级乡村振兴战略专项资金种业振兴项目(2021-440000-24010202-8887、2022-440000-4301030202-9510、2022-4408X1-43010402-0019)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文