山西农业大学信息科学与工程学院;海南大学信息与通信工程学院;山西农业大学生命科学学院;山西农业大学农业工程学院;旱作农业机械关键技术与装备山西省重点实验室;
动物行为识别旨在理解动物的行为,并对每种行为贴上类别标签,具有广泛的应用前景。近年来,动物行为识别在计算机视觉领域受到了越来越多地关注。动物行为识别技术的发展经历了从传统的基于手工特征的方法向基于深度学习的方法演变。本文根据动物行为识别技术发展的基本脉络,综述了传统方法和深度学习方法中的主要流派和技术手段,概述了各种技术手段优缺点及其在动物行为研究中的应用情况。
1,038 | 0 | 67 |
下载次数 | 被引频次 | 阅读次数 |
[1] Bergman T J, Beehner J C. Information ecology:an integrative framework for studying animal behavior[J]. Trends Ecol Evol,2023, 38(11):1041-1050.
[2] Chen C, Zhu W, Norton T. Behaviour recognition of pigs and cattle:journey from computer vision to deep learning[J].Comput Electron Agric, 2021, 187:106255.
[3] Zhang Y J, Luo Z, Sun Y, et al. From beasts to bytes:revolutionizing zoological research with artificial intelligence[J]. Zool Res, 2023, 44(6):1115-1131.
[4] Siradjuddin I A, Sakinah A, Sophan M K. Combination of feature engineering and feature learning approaches for classification on visual complexity images[J]. J Info Int, 2021,17(3):991-1005.
[5] Garcia R, Aguilar J, Toro M, et al. A systematic literature review on the use of machine learning in precision livestock farming[J]. Comput Electron Agric, 2020, 179:105826.
[6]林克正,张元铭,李昊天.信息熵加权的HOG特征提取算法研究[J].计算机工程与应用, 2020, 56(6):147-152.
[7] Jaddoa M, Gonzalez L, Cuthbertson, H, et al. Multi view face detection in cattle using infrared thermography[A]. Applied computing to support industry:innovation and technology[C].Switzerland:Springer Cham, 2020:223-236.
[8]白云翔.基于改进HOG特征的斑马鱼多目标追踪[D].天津:南开大学, 2019.
[9]宋琳,刘永涛.加权HOG与特征融合行为识别方法研究[J].软件导刊, 2021, 20(11):53-56.
[10] Ojala T, Pietikainen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[A]. Proceedings of 12th International Conference on Pattern Recognition[C]. New York:IEEE, 1994, 1:582-585.
[11] Meena K, Suruliandi A. Local binary patterns and its variants for face recognition[A]. 2011 International Conference on Recent Trends in Information Technology[C]. New York:IEEE,2011:782-786.
[12]张满囤,米娜,于洋,等.基于特征融合的奶牛个体识别[J].江苏农业科学, 2018, 46(24):278-281.
[13]朱瑞金,张涛,扎西顿珠.基于LBP特征的BP神经网络鱼群摄食行为检测研究[J].黑龙江科学, 2021, 12(18):5-8.
[14] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. Int J Comput Vision, 2004, 60(2):91-110.
[15] Tharwat A, Gaber T, Hassanien A E, et al. A Fully-automated zebra animal identification approach based on SIFT features[A]. Advances in intelligent systems and computing[C]. Switzerland:Springer Cham, 2017, 536:289-297.
[16] Awad A I, Zawbaa H M, Mahmoud H A, et al. A robust cattle identification scheme using muzzle print images[A]. 2013Federated Conference on Computer Science and Information Systems[C]. New York:IEEE, 2013:529-534.
[17]马驰原.基于多特征融合的船舶目标跟踪算法[D].大连:大连海事大学, 2022.
[18]肖文卿,汪鸿浩,詹长安.基于小波系数特征融合的小鼠癫痫脑电分类[J].计算机工程与应用, 2019, 55(14):155-161.
[19]李亿杨,孙龙清,孙鑫鑫.基于多特征融合的粒子滤波生猪采食行为跟踪[J].农业工程学报, 2017, 33(S1):246-252.
[20]张雯雯,徐杨,白芮,等.基于改进堆叠沙漏网络的动物姿态估计[J].计算机工程, 2023, 49(2):263-270.
[21] Utthara G, Suranjana S, Sukhendu D. A survey of decision fusion and feature fusion strategies for pattern classification[J].IETE Tech Rev, 2010, 27(4):293-307.
[22] Ahmed M, Seraj R, Islam S M S. The K-means algorithm:a comprehensive survey and performance evaluation[J]. Electronics, 2020, 9(8):1-12.
[23]李光昌,刘飞飞,李嘉豪.基于改进OpenPose算法的猪只行为识别方法[J].河南农业大学学报, 2022, 56(3):460-470.
[24] Tian F, Wang J, Xiong B, et al. Real-time behavioral recognition in dairy cows based on geomagnetism and acceleration information[J]. IEEE Access, 2021, 9:109497-109509.
[25] Yue S, Li P, Hao P. SVM classification:Its contents and challenges[J]. Appl Math Ser B, 2003, 18:332-342.
[26]何炜婷,曾碧.一种基于深度学习和SVM的动物姿态行为估计与心情识别方法:CN110457999A[P]. 2019-11-15.
[27]赵珊珊.基于行为识别的鹿个体疾病早期诊断研究[D].长春:吉林农业大学, 2021.
[28] Jena M, Dehuri S. Decisiontree for classification and regression:a state-of-the art review[J]. Informatica, 2020, 44(4):405-420.
[29] Kotsiantis S B. Decision trees:a recent overview[J]. Artif Intell Rev, 2013, 39:261-283.
[30] Tamura T, Okubo Y, Deguchi Y, et al. Dairy cattle behavior classifications based on decision tree learning using 3-axis neck-mounted accelerometers[J]. Anim Sci J, 2019, 90(4):589-596.
[31] Khanh P, Chinh N, Cham T, et al. Classification of cow behavior using 3-DOF accelerometer and decision tree algorithm[A].2016 International Conference on Biomedical Engineering[C].New York:IEEE, 2016:45-50.
[32]陈紫城.基于时空兴趣点的生猪行为识别[D].广州:华南农业大学, 2016.
[33]肖夏伟.基于时空特征的猪饮水行为识别和特征融合的身份识别[D].镇江:江苏大学, 2022.
[34]庄晓霖.基于机器视觉的家禽异常行为检测方法研究[D].广州:华南农业大学,2019.
[35]赫磊,邵展鹏,张剑华,等.基于深度学习的行为识别算法综述[J].计算机科学, 2020, 47(S1):139-147.
[36] Feichtenhofer C, Pinz A, Zisserman A. Convolutional twostream network fusion for video action recognition[A].Proceedings of the IEEE conference on computer vision and pattern recognition[C]. New York:IEEE, 2016:1933-1941.
[37] Zhang K, Li D, Huang J, et al. Automated video behavior recognition of pigs using two-stream convolutional networks[J].Sensors, 2020, 20(4):1085-1085.
[38] Hao W, Zhang K, Zhang L, et al. TSML:A new pig behavior recognition method based on two-stream mutual learning network[J]. Sensors, 2023, 23(11):5092-5092.
[39] Shi L, Zhang Y, Cheng J, et al. Non-local graph convolutional networks for skeleton-based action recognition[J]. arXiv, 2018,1(2):3.
[40] Yin X, Wu D, Shang Y, et al. Using an EfficientNet-LSTM for the recognition of single cow’s motion behaviours in a complicated environment[J]. Comput Electron Agric, 2020, 177:105707.
[41] Qiao Y, Su D, Kong H, et al. Individual cattle identification using a deep learning based framework[J]. IFAC-Papers OnLine, 2019, 52(30):318-323.
[42] Chen C, Zhu W, Steibel J, et al. Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory[J]. Comput Electron Agric, 2020, 169:105166.
[43] Wu D, Wu Q, Yin X, et al. Lameness detection of dairy cows based on the YOLOv3 deep learning algorithm and a relative step size characteristic vector[J]. Biosyst Eng, 2020, 189:150-163.
[44] Li Z, Song L, Duan Y, et al. Basic motion behaviour recognition of dairy cows based on skeleton and hybrid convolution algorithms[J]. Comput Electron Agric, 2022, 196:106889.
[45] Wang Y, Li R, Wang Z, et al. E3D:an efficient 3d CNN for the recognition of dairy cow's basic motion behavior[J]. Comput Electron Agric, 2023, 205:107607.
[46] Qiao Y, Guo Y, Yu K, et al. C3D-ConvLSTM based cow behaviour classification using video data for precision livestock farming[J]. Comput Electron Agric, 2022, 193:106650.
[47]杜妍茹.基于计算机视觉的牛日常行为识别研究[D].包头:内蒙古科技大学, 2022.
[48]徐文凯.基于图像的水下动物目标识别与行为分析研究[D].青岛:青岛农业大学, 2022.
[49] Tu S, Zeng Q, Liang Y, et al. Automated behavior recognition and tracking of group-housed pigs with an improved DeepSORT method[J]. Agriculture, 2022, 12(11):1907.
[50]张宏鸣,武杰,李永恒,等.多目标肉牛进食行为识别方法研究[J].农业机械学报, 2020, 51(10):259-267.
[51]翟惠莹.基于RGBD和三维姿态特征融合的小鼠行为识别和分析[D].秦皇岛:燕山大学, 2022.
[52]李怡.基于多模型融合的奶山羊行为识别算法研究[D].杨凌:西北农林科技大学, 2021.
[53]欧士路.基于深度学习的湖羊行为识别研究与应用[D].扬州:扬州大学, 2022.
[54]史怀,陈峥,潘志针.基于机器视觉的猪个体身份和行为识别[J].福建畜牧兽医, 2021, 43(1):27-30.
[55]张飞宇,王美丽,王正超.引入Transformer和尺度融合的动物骨骼关键点检测模型构[J].农业工程学报, 2021, 37(23):179-185.
基本信息:
DOI:10.19556/j.0258-7033.20231103-04
中图分类号:S818.9;TP391.41
引用信息:
[1]李林葳,宋鑫悦,张智盛等.基于图像处理技术的动物行为识别研究进展[J].中国畜牧杂志,2024,60(10):24-34.DOI:10.19556/j.0258-7033.20231103-04.
基金信息:
山西省基础研究计划青年科学研究项目(20210302124497); 山西重点研发计划子课题(202102140601005); 农业农村部设施农业装备与信息化重点实验室开放课题(2011NYZD2202); 山西农业大学博士启动专项(2021BQ113);山西农业大学大学生创新创业训练计划项目(20230204); 山西农业大学2023年度创新创业教育研究课题(2023Y06)